Cascading failures in interdependent systems under a flow redistribution model.

نویسندگان

  • Yingrui Zhang
  • Alex Arenas
  • Osman Yağan
چکیده

Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {L_{A,i},C_{A,i}}_{i=1}^{n} and {L_{B,i},C_{B,i}}_{i=1}^{n}, respectively. When a line fails in system A, a fraction of its load is redistributed to alive lines in B, while remaining (1-a) fraction is redistributed equally among all functional lines in A; a line failure in B is treated similarly with b giving the fraction to be redistributed to A. We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p_{1} fraction of lines in A and p_{2} fraction in B. We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b, and robustness is maximized at non-trivial a,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MTBF evaluation for 2-out-of-3 redundant repairable systems with common cause and cascade failures considering fuzzy rates for failures and repair: a case study of a centrifugal water pumping system

In many cases, redundant systems are beset by both independent and dependent failures. Ignoring dependent variables in MTBF evaluation of redundant systems hastens the occurrence of failure, causing it to take place before the expected time, hence decreasing safety and creating irreversible damages. Common cause failure (CCF) and cascading failure are two varieties of dependent failures, both l...

متن کامل

Network Interdependence and Information Dynamics in Cyber - Physical Systems

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown th...

متن کامل

The robust-yet-fragile nature of interdependent networks

Interdependent networks have been shown to be extremely vulnerable based on the percolation model. Parshani et. al further indicated that the more inter-similar networks are, the more robust they are to random failure. Our understanding of how coupling patterns shape and impact the cascading failures of loads in interdependent networks is limited, but is essential for the design and optimizatio...

متن کامل

Cascades in interdependent flow networks

In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of f...

متن کامل

Cascading Failures in Interdependent Systems: Impact of Degree Variability and Dependence

We study cascading failures in a system comprising interdependent networks/systems, in which nodes rely on other nodes both in the same system and in other systems to perform their function. The (inter-)dependence among nodes is modeled using a dependence graph, where the degree vector of a node determines the number of other nodes it can potentially cause to fail in each system through aforeme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 97 2-1  شماره 

صفحات  -

تاریخ انتشار 2018